Enecarbamates as selective substrates in oxidations: chiral-auxiliary-controlled mode selectivity and diastereoselectivity in the [2+2] cycloaddition and ene reaction of singlet oxygen and in the epoxidation by DMD and mCPBA.
نویسندگان
چکیده
The stereochemical course of the oxidation of chiral oxazolidinone-substituted enecarbamates has been studied for singlet oxygen ((1)O(2)), dimethyldioxirane (DMD), and m-chloroperbenzoic acid (mCPBA) by examining of the special structural and stereoelectronic features of the enecarbamates. Valuable mechanistic insight into these selective oxidations is gained. Whereas the R(1) substituent on the chiral auxiliary is responsible for the steric shielding of the double bond and determines the sense of the pi-facial diastereoselectivity, structural characteristic such as the Z/E configuration and the nature of the R(2) group on the double bond are responsible for the extent of the diastereoselectivity. Stereoelectronic steering by the vinylic nitrogen functionality controls the mode selectivity (ene reaction vs [2+2] cycloaddition) in the case of (1)O(2).
منابع مشابه
Control of the mode selectivity (ene reaction versus [2 + 2] cycloaddition) in the photooxygenation of ene carbamates: directing effect of an alkenylic nitrogen functionality.
The geometry of the double bond in oxazolidinone-substituted ene carbamates controls the mode selectivity (ene reaction versus [2+2] cycloaddition) of singlet oxygen through stereoelectronic effects, whereas the chiral auxiliary provides high diastereoselectivity through steric shielding.
متن کاملHighly diastereoselective dioxetane formation in the photooxygenation of enecarbamates with an oxazolidinone chiral auxiliary: steric control in the [2 + 2] cycloaddition of singlet oxygen through conformational alignment.
The photooxygenation of oxazolidinone-substituted enecarbamates leads to diastereomerically pure dioxetanes. The high diastereoselectivity is rationalized in terms of effective pi-facial control achieved by shielding one side of the double bond with the chiral auxiliary. The absolute configuration of the dioxetanes is assigned by derivatization to diols.
متن کاملThe reaction of singlet oxygen with enecarbamates: a mechanistic playground for investigating chemoselectivity, stereoselectivity, and vibratioselectivity of photooxidations.
Photochirogenesis, the control of chirality in photoreactions, is one of the most challenging problems in stereocontrolled photochemistry, in which the stereodifferentiation has to be imprinted within the short lifetime of the electronically excited state. Singlet oxygen (1O2), an electronically excited molecule that is known to be sensitive to vibrational deactivation, has been selected as a m...
متن کاملChiral Induction in Cycloaddition Reactions of Azomethine Ylides to Synthesis of New Enantiomerically Pure Spiro Oxindolopyrrolizidines
An efficient one-pot three-component procedure for the synthesis of new chiral spiro-oxindolopyrrolizidines with highly regio-, diastereo-, and enantioselective from 1,3-dipolar cycloaddition of azomethine ylides and optically pure active cinamoyl oxazolidinone are described. The process occurs at room temperature in aqueous ethanol as green solvent and in the absence of any bidentate chelating...
متن کاملChiral Induction in Cycloaddition Reactions of Azomethine Ylides to Synthesis of New Enantiomerically Pure Spiro Oxindolopyrrolizidines
An efficient one-pot three-component procedure for the synthesis of new chiral spiro-oxindolopyrrolizidines with highly regio-, diastereo-, and enantioselective from 1,3-dipolar cycloaddition of azomethine ylides and optically pure active cinamoyl oxazolidinone are described. The process occurs at room temperature in aqueous ethanol as green solvent and in the absence of any bidentate chelating...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of organic chemistry
دوره 69 5 شماره
صفحات -
تاریخ انتشار 2004